Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 148(2): 542, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32873020

RESUMO

Many animals increase the intensity of their vocalizations in increased noise. This response is known as the Lombard effect. While some previous studies about cetaceans report a 1 dB increase in the source level (SL) for every dB increase in the background noise level (NL), more recent data have not supported this compensation ability. The purpose of this study was to calculate the SLs of humpback whale song units recorded off Hawaii and test for a relationship between these SLs and background NLs. Opportunistic recordings during 2012-2017 were used to detect and track 524 humpback whale encounters comprised of 83 974 units on the U.S. Navy's Pacific Missile Range Facility hydrophones. Received levels were added to their estimated transmission losses to calculate SLs. Humpback whale song units had a median SL of 173 dB re 1 µPa at 1 m, and SLs increased by 0.53 dB/1 dB increase in background NLs. These changes occurred in real time on hourly and daily time scales. Increases in ambient noise could reduce male humpback whale communication space in the important breeding area off Hawaii. Since these vocalization changes may be dependent on location or behavioral state, more work is needed at other locations and with other species.


Assuntos
Jubarte , Acústica , Animais , Havaí , Masculino , Oceanos e Mares , Vocalização Animal
2.
J Acoust Soc Am ; 147(2): 698, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113274

RESUMO

Minke whales were acoustically detected, localized, and tracked on the U.S. Navy's Pacific Missile Range Facility from 2012 to 2017. Animal source levels (SLs) were estimated by adding transmission loss estimates to measured received levels of 42 159 individual minke whale boings. Minke whales off Hawaii exhibited the Lombard effect in that they increased their boing call intensity in increased background noise. Minke whales also decreased the variance of the boing call SL in higher background noise levels. Although the whales partially compensated for increasing background noise, they were unable or unwilling to increase their SLs by the same amount as the background noise. As oceans become louder, this reduction in communication space could negatively impact the health of minke whale populations. The findings in this study also have important implications for acoustic animal density studies, which may use SL to estimate probability of detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...